Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Parameterized algorithms for locating-dominating sets (2011.14849v2)

Published 30 Nov 2020 in cs.DS

Abstract: A locating-dominating set $D$ of a graph $G$ is a dominating set of $G$ where each vertex not in $D$ has a unique neighborhood in $D$, and the Locating-Dominating Set problem asks if $G$ contains such a dominating set of bounded size. This problem is known to be $\mathsf{NP-hard}$ even on restricted graph classes, such as interval graphs, split graphs, and planar bipartite subcubic graphs. On the other hand, it is known to be solvable in polynomial time for some graph classes, such as trees and, more generally, graphs of bounded cliquewidth. While these results have numerous implications on the parameterized complexity of the problem, little is known in terms of kernelization under structural parameterizations. In this work, we begin filling this gap in the literature. Our first result shows that Locating-Dominating Set, when parameterized by the solution size $d$, admits no $2{o(d \log d)}$ time algorithm unless the Exponential Time Hypothesis fails; as a corollary, we also show that no $n{o(d)}$ time algorithm exists under ETH, implying that the naive $\mathsf{XP}$ algorithm is essentially optimal. We present an exponential kernel for the distance to cluster parameterization and show that, unless $\mathsf{NP-hard} \subseteq \mathsf{NP-hard}/$\mathsf{poly}$, no polynomial kernel exists for Locating-Dominating Set when parameterized by vertex cover nor when parameterized by distance to clique. We then turn our attention to parameters not bounded by neither of the previous two, and exhibit a linear kernel when parameterizing by the max leaf number; in this context, we leave the parameterization by feedback edge set as the primary open problem in our study.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.