Papers
Topics
Authors
Recent
2000 character limit reached

On Initial Pools for Deep Active Learning (2011.14696v2)

Published 30 Nov 2020 in cs.LG and cs.CV

Abstract: Active Learning (AL) techniques aim to minimize the training data required to train a model for a given task. Pool-based AL techniques start with a small initial labeled pool and then iteratively pick batches of the most informative samples for labeling. Generally, the initial pool is sampled randomly and labeled to seed the AL iterations. While recent studies have focused on evaluating the robustness of various query functions in AL, little to no attention has been given to the design of the initial labeled pool for deep active learning. Given the recent successes of learning representations in self-supervised/unsupervised ways, we study if an intelligently sampled initial labeled pool can improve deep AL performance. We investigate the effect of intelligently sampled initial labeled pools, including the use of self-supervised and unsupervised strategies, on deep AL methods. The setup, hypotheses, methodology, and implementation details were evaluated by peer review before experiments were conducted. Experimental results could not conclusively prove that intelligently sampled initial pools are better for AL than random initial pools in the long run, although a Variational Autoencoder-based initial pool sampling strategy showed interesting trends that merit deeper investigation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.