Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

DeepCloth: Neural Garment Representation for Shape and Style Editing (2011.14619v2)

Published 30 Nov 2020 in cs.CV

Abstract: Garment representation, editing and animation are challenging topics in the area of computer vision and graphics. It remains difficult for existing garment representations to achieve smooth and plausible transitions between different shapes and topologies. In this work, we introduce, DeepCloth, a unified framework for garment representation, reconstruction, animation and editing. Our unified framework contains 3 components: First, we represent the garment geometry with a "topology-aware UV-position map", which allows for the unified description of various garments with different shapes and topologies by introducing an additional topology-aware UV-mask for the UV-position map. Second, to further enable garment reconstruction and editing, we contribute a method to embed the UV-based representations into a continuous feature space, which enables garment shape reconstruction and editing by optimization and control in the latent space, respectively. Finally, we propose a garment animation method by unifying our neural garment representation with body shape and pose, which achieves plausible garment animation results leveraging the dynamic information encoded by our shape and style representation, even under drastic garment editing operations. To conclude, with DeepCloth, we move a step forward in establishing a more flexible and general 3D garment digitization framework. Experiments demonstrate that our method can achieve state-of-the-art garment representation performance compared with previous methods.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.