Optimally Supporting IoT with Cell-Free Massive MIMO (2011.14514v1)
Abstract: We study internet of things (IoT) systems supported by cell-free (CF) massive MIMO (mMIMO) with optimal linear channel estimation. For the uplink, we consider optimal linear MIMO receiver and obtain an uplink SINR approximation involving only large-scale fading coefficients using random matrix (RM) theory. Using this approximation we design several max-min power control algorithms that incorporate power and rate weighting coefficients to achieve a target rate with high energy efficiency. For the downlink, we consider maximum ratio (MR) beamforming. Instead of solving a complex quasi-concave problem for downlink power control, we employ a neural network (NN) technique to obtain comparable power control with around 30 times reduction in computation time. For large networks we proposed a different NN based power control algorithm. This algorithm is sub-optimal, but its big advantage is that it is scalable.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.