Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Value Function Based Performance Optimization of Deep Learning Workloads (2011.14486v1)

Published 30 Nov 2020 in cs.LG and cs.AI

Abstract: As machine learning techniques become ubiquitous, the efficiency of neural network implementations is becoming correspondingly paramount. Frameworks, such as Halide and TVM, separate out the algorithmic representation of the network from the schedule that determines its implementation. Finding good schedules, however, remains extremely challenging. We model this scheduling problem as a sequence of optimization choices, and present a new technique to accurately predict the expected performance of a partial schedule. By leveraging these predictions we can make these optimization decisions greedily and rapidly identify an efficient schedule. This enables us to find schedules that improve the throughput of deep neural networks by 2.6x over Halide and 1.5x over TVM. Moreover, our technique is two to three orders of magnitude faster than that of these tools, and completes in seconds instead of hours.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.