Papers
Topics
Authors
Recent
2000 character limit reached

Kinetics-Informed Neural Networks (2011.14473v2)

Published 30 Nov 2020 in cs.LG, cs.AI, cs.NA, math.DS, and math.NA

Abstract: Chemical kinetics and reaction engineering consists of the phenomenological framework for the disentanglement of reaction mechanisms, optimization of reaction performance and the rational design of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions to solve ordinary differential equations (ODEs) constrained by differential algebraic equations (DAEs) that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical description and classification of reaction networks, types of elementary reaction, and chemical species. Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model parameters in a regularized multi-objective optimization setting leads to the solution of the inverse problem through the estimation of kinetic parameters from synthetic experimental data. We analyze a set of scenarios to establish the extent to which kinetic parameters can be retrieved from transient kinetic data, and assess the robustness of the methodology with respect to statistical noise. This approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.