Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fully Quantized Image Super-Resolution Networks (2011.14265v2)

Published 29 Nov 2020 in eess.IV and cs.CV

Abstract: With the rising popularity of intelligent mobile devices, it is of great practical significance to develop accurate, realtime and energy-efficient image Super-Resolution (SR) inference methods. A prevailing method for improving the inference efficiency is model quantization, which allows for replacing the expensive floating-point operations with efficient fixed-point or bitwise arithmetic. To date, it is still challenging for quantized SR frameworks to deliver feasible accuracy-efficiency trade-off. Here, we propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy. In particular, we target on obtaining end-to-end quantized models for all layers, especially including skip connections, which was rarely addressed in the literature. We further identify training obstacles faced by low-bit SR networks and propose two novel methods accordingly. The two difficulites are caused by 1) activation and weight distributions being vastly distinctive in different layers; 2) the inaccurate approximation of the quantization. We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR. Experimental results show that our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets and surpass state-of-the-art quantized SR methods with significantly reduced computational cost and memory consumption.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.