Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Supervised Learning for Sparsely-Labeled Sequential Data: Application to Healthcare Video Processing (2011.14101v5)

Published 28 Nov 2020 in cs.CV

Abstract: Labeled data is a critical resource for training and evaluating machine learning models. However, many real-life datasets are only partially labeled. We propose a semi-supervised machine learning training strategy to improve event detection performance on sequential data, such as video recordings, when only sparse labels are available, such as event start times without their corresponding end times. Our method uses noisy guesses of the events' end times to train event detection models. Depending on how conservative these guesses are, mislabeled samples may be introduced into the training set. We further propose a mathematical model for explaining and estimating the evolution of the classification performance for increasingly noisier end time estimates. We show that neural networks can improve their detection performance by leveraging more training data with less conservative approximations despite the higher proportion of incorrect labels. We adapt sequential versions of CIFAR-10 and MNIST, and use the Berkeley MHAD and HMBD51 video datasets to empirically evaluate our method, and find that our risk-tolerant strategy outperforms conservative estimates by 3.5 points of mean average precision for CIFAR, 30 points for MNIST, 3 points for MHAD, and 14 points for HMBD51. Then, we leverage the proposed training strategy to tackle a real-life application: processing continuous video recordings of epilepsy patients, and show that our method outperforms baseline labeling methods by 17 points of average precision, and reaches a classification performance similar to that of fully supervised models. We share part of the code for this article.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com