Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deterministic Certification to Adversarial Attacks via Bernstein Polynomial Approximation (2011.14085v1)

Published 28 Nov 2020 in cs.LG and cs.CR

Abstract: Randomized smoothing has established state-of-the-art provable robustness against $\ell_2$ norm adversarial attacks with high probability. However, the introduced Gaussian data augmentation causes a severe decrease in natural accuracy. We come up with a question, "Is it possible to construct a smoothed classifier without randomization while maintaining natural accuracy?". We find the answer is definitely yes. We study how to transform any classifier into a certified robust classifier based on a popular and elegant mathematical tool, Bernstein polynomial. Our method provides a deterministic algorithm for decision boundary smoothing. We also introduce a distinctive approach of norm-independent certified robustness via numerical solutions of nonlinear systems of equations. Theoretical analyses and experimental results indicate that our method is promising for classifier smoothing and robustness certification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.