Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Group-level Fairness Maximization in Online Bipartite Matching (2011.13908v3)

Published 27 Nov 2020 in cs.DS

Abstract: We consider the allocation of limited resources to heterogeneous customers who arrive in an online fashion. We would like to allocate the resources "fairly", so that no group of customers is marginalized in terms of their overall service rate. We study whether this is possible to do so in an online fashion, and if so, what a good online allocation policy is. We model this problem using online bipartite matching under stationary arrivals, a fundamental model in the literature typically studied under the objective of maximizing the total number of customers served. We instead study the objective of maximizing the minimum service rate across all groups, and propose two notions of fairness: long-run and short-run. For these fairness objectives, we analyze how competitive online algorithms can be, in comparison to offline algorithms which know the sequence of demands in advance. For long-run fairness, we propose two online heuristics (Sampling and Pooling) which establish asymptotic optimality in different regimes (no specialized supplies, no rare demand types, or imbalanced supply/demand). By contrast, outside all of these regimes, we show that the competitive ratio of online algorithms is between 0.632 and 0.732. For short-run fairness, we show for complete bipartite graphs that the competitive ratio of online algorithms is between 0.863 and 0.942; we also derive a probabilistic rejection algorithm which is asymptotically optimal in the total demand. Depending on the overall scarcity of resources, either our Sampling or Pooling heuristics could be desirable. The most difficult situation for online allocation occurs when the total supply is just enough to serve the total demand. We simulate our algorithms on a public ride-hailing dataset, which both demonstrates the efficacy of our heuristics and validates our managerial insights.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.