Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank (2011.13772v5)

Published 27 Nov 2020 in cs.LG and math.OC

Abstract: In deep learning, it is common to use more network parameters than training points. In such scenarioof over-parameterization, there are usually multiple networks that achieve zero training error so that thetraining algorithm induces an implicit bias on the computed solution. In practice, (stochastic) gradientdescent tends to prefer solutions which generalize well, which provides a possible explanation of thesuccess of deep learning. In this paper we analyze the dynamics of gradient descent in the simplifiedsetting of linear networks and of an estimation problem. Although we are not in an overparameterizedscenario, our analysis nevertheless provides insights into the phenomenon of implicit bias. In fact, wederive a rigorous analysis of the dynamics of vanilla gradient descent, and characterize the dynamicalconvergence of the spectrum. We are able to accurately locate time intervals where the effective rankof the iterates is close to the effective rank of a low-rank projection of the ground-truth matrix. Inpractice, those intervals can be used as criteria for early stopping if a certain regularity is desired. Wealso provide empirical evidence for implicit bias in more general scenarios, such as matrix sensing andrandom initialization. This suggests that deep learning prefers trajectories whose complexity (measuredin terms of effective rank) is monotonically increasing, which we believe is a fundamental concept for thetheoretical understanding of deep learning.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.