Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Explaining Deep Learning Models for Structured Data using Layer-Wise Relevance Propagation (2011.13429v1)

Published 26 Nov 2020 in cs.LG and cs.CV

Abstract: Trust and credibility in machine learning models is bolstered by the ability of a model to explain itsdecisions. While explainability of deep learning models is a well-known challenge, a further chal-lenge is clarity of the explanation itself, which must be interpreted by downstream users. Layer-wiseRelevance Propagation (LRP), an established explainability technique developed for deep models incomputer vision, provides intuitive human-readable heat maps of input images. We present the novelapplication of LRP for the first time with structured datasets using a deep neural network (1D-CNN),for Credit Card Fraud detection and Telecom Customer Churn prediction datasets. We show how LRPis more effective than traditional explainability concepts of Local Interpretable Model-agnostic Ex-planations (LIME) and Shapley Additive Explanations (SHAP) for explainability. This effectivenessis both local to a sample level and holistic over the whole testing set. We also discuss the significantcomputational time advantage of LRP (1-2s) over LIME (22s) and SHAP (108s), and thus its poten-tial for real time application scenarios. In addition, our validation of LRP has highlighted features forenhancing model performance, thus opening up a new area of research of using XAI as an approachfor feature subset selection

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.