Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understand Watchdogs: Discover How Game Bot Get Discovered (2011.13374v2)

Published 26 Nov 2020 in cs.AI, cs.HC, and cs.LG

Abstract: The game industry has long been troubled by malicious activities utilizing game bots. The game bots disturb other game players and destroy the environmental system of the games. For these reasons, the game industry put their best efforts to detect the game bots among players' characters using the learning-based detections. However, one problem with the detection methodologies is that they do not provide rational explanations about their decisions. To resolve this problem, in this work, we investigate the explainabilities of the game bot detection. We develop the XAI model using a dataset from the Korean MMORPG, AION, which includes game logs of human players and game bots. More than one classification model has been applied to the dataset to be analyzed by applying interpretable models. This provides us explanations about the game bots' behavior, and the truthfulness of the explanations has been evaluated. Besides, interpretability contributes to minimizing false detection, which imposes unfair restrictions on human players.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eunji Park (4 papers)
  2. Kyung Ho Park (9 papers)
  3. Huy Kang Kim (35 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.