Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Immersion-based model predictive control of constrained nonlinear systems: Polyflow approximation (2011.13255v2)

Published 26 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: In the framework of Model Predictive Control (MPC), the control input is typically computed by solving optimization problems repeatedly online. For general nonlinear systems, the online optimization problems are non-convex and computationally expensive or even intractable. In this paper, we propose to circumvent this issue by computing a high-dimensional linear embedding of discrete-time nonlinear systems. The computation relies on an algebraic condition related to the immersibility property of nonlinear systems and can be implemented offline. With the high-dimensional linear model, we then define and solve a convex online MPC problem. We also provide an interpretation of our approach under the Koopman operator framework.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.