Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Saliency-based segmentation of dermoscopic images using color information (2011.13179v3)

Published 26 Nov 2020 in eess.IV and cs.CV

Abstract: Skin lesion segmentation is one of the crucial steps for an efficient non-invasive computer-aided early diagnosis of melanoma. This paper investigates how color information, besides saliency, can be used to determine the pigmented lesion region automatically. Unlike most existing segmentation methods using only the saliency in order to discriminate against the skin lesion from the surrounding regions, we propose a novel method employing a binarization process coupled with new perceptual criteria, inspired by the human visual perception, related to the properties of saliency and color of the input image data distribution. As a means of refining the accuracy of the proposed method, the segmentation step is preceded by a pre-processing aimed at reducing the computation burden, removing artifacts, and improving contrast. We have assessed the method on two public databases, including 1497 dermoscopic images. We have also compared its performance with classical and recent saliency-based methods designed explicitly for dermoscopic images. The qualitative and quantitative evaluation indicates that the proposed method is promising since it produces an accurate skin lesion segmentation and performs satisfactorily compared to other existing saliency-based segmentation methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.