Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum algorithms for matrix scaling and matrix balancing (2011.12823v1)

Published 25 Nov 2020 in quant-ph, cs.CC, cs.DS, and math.OC

Abstract: Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications, such as approximating the permanent, and pre-conditioning linear systems to make them more numerically stable. We study the power and limitations of quantum algorithms for these problems. We provide quantum implementations of two classical (in both senses of the word) methods: Sinkhorn's algorithm for matrix scaling and Osborne's algorithm for matrix balancing. Using amplitude estimation as our main tool, our quantum implementations both run in time $\tilde O(\sqrt{mn}/\varepsilon4)$ for scaling or balancing an $n \times n$ matrix (given by an oracle) with $m$ non-zero entries to within $\ell_1$-error $\varepsilon$. Their classical analogs use time $\tilde O(m/\varepsilon2)$, and every classical algorithm for scaling or balancing with small constant $\varepsilon$ requires $\Omega(m)$ queries to the entries of the input matrix. We thus achieve a polynomial speed-up in terms of $n$, at the expense of a worse polynomial dependence on the obtained $\ell_1$-error $\varepsilon$. We emphasize that even for constant $\varepsilon$ these problems are already non-trivial (and relevant in applications). Along the way, we extend the classical analysis of Sinkhorn's and Osborne's algorithm to allow for errors in the computation of marginals. We also adapt an improved analysis of Sinkhorn's algorithm for entrywise-positive matrices to the $\ell_1$-setting, leading to an $\tilde O(n{1.5}/\varepsilon3)$-time quantum algorithm for $\varepsilon$-$\ell_1$-scaling in this case. We also prove a lower bound, showing that our quantum algorithm for matrix scaling is essentially optimal for constant $\varepsilon$: every quantum algorithm for matrix scaling that achieves a constant $\ell_1$-error with respect to uniform marginals needs to make at least $\Omega(\sqrt{mn})$ queries.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube