Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Auto Graph Encoder-Decoder for Neural Network Pruning (2011.12641v3)

Published 25 Nov 2020 in cs.CV

Abstract: Model compression aims to deploy deep neural networks (DNN) on mobile devices with limited computing and storage resources. However, most of the existing model compression methods rely on manually defined rules, which require domain expertise. DNNs are essentially computational graphs, which contain rich structural information. In this paper, we aim to find a suitable compression policy from DNNs' structural information. We propose an automatic graph encoder-decoder model compression (AGMC) method combined with graph neural networks (GNN) and reinforcement learning (RL). We model the target DNN as a graph and use GNN to learn the DNN's embeddings automatically. We compared our method with rule-based DNN embedding model compression methods to show the effectiveness of our method. Results show that our learning-based DNN embedding achieves better performance and a higher compression ratio with fewer search steps. We evaluated our method on over-parameterized and mobile-friendly DNNs and compared our method with handcrafted and learning-based model compression approaches. On over parameterized DNNs, such as ResNet-56, our method outperformed handcrafted and learning-based methods with $4.36\%$ and $2.56\%$ higher accuracy, respectively. Furthermore, on MobileNet-v2, we achieved a higher compression ratio than state-of-the-art methods with just $0.93\%$ accuracy loss.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.