Papers
Topics
Authors
Recent
2000 character limit reached

Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-art Techniques (2011.12598v3)

Published 25 Nov 2020 in cs.LG

Abstract: Energy forecasting has a vital role to play in smart grid (SG) systems involving various applications such as demand-side management, load shedding, and optimum dispatch. Managing efficient forecasting while ensuring the least possible prediction error is one of the main challenges posed in the grid today, considering the uncertainty and granularity in SG data. This paper presents a comprehensive and application-oriented review of state-of-the-art forecasting methods for SG systems along with recent developments in probabilistic deep learning (PDL) considering different models and architectures. Traditional point forecasting methods including statistical, ML, and deep learning (DL) are extensively investigated in terms of their applicability to energy forecasting. In addition, the significance of hybrid and data pre-processing techniques to support forecasting performance is also studied. A comparative case study using the Victorian electricity consumption and American electric power (AEP) datasets is conducted to analyze the performance of point and probabilistic forecasting methods. The analysis demonstrates higher accuracy of the long-short term memory (LSTM) models with appropriate hyper-parameter tuning among point forecasting methods especially when sample sizes are larger and involve nonlinear patterns with long sequences. Furthermore, Bayesian bidirectional LSTM (BLSTM) as a probabilistic method exhibit the highest accuracy in terms of least pinball score and root mean square error (RMSE).

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.