Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Building 3D Morphable Models from a Single Scan (2011.12440v2)

Published 24 Nov 2020 in cs.CV and cs.GR

Abstract: We propose a method for constructing generative models of 3D objects from a single 3D mesh. Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes. We define the shape deformations in physical (3D) space and the albedo deformations as a combination of physical-space and color-space deformations. Whereas previous approaches have typically built 3D morphable models from multiple high-quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. As we demonstrate in the face domain, these models can be used to infer 3D reconstructions from 2D data (inverse graphics) or 3D data (registration). Specifically, we show that our approach can be used to perform face recognition using only a single 3D scan (one scan total, not one per person), and further demonstrate how multiple scans can be incorporated to improve performance without requiring dense correspondence. Our approach enables the synthesis of 3D morphable models for 3D object categories where dense correspondence between multiple scans is unavailable. We demonstrate this by constructing additional 3D morphable models for fish and birds and use them to perform simple inverse rendering tasks. We share the code used to generate these models and to perform our inverse rendering and registration experiments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.