Papers
Topics
Authors
Recent
2000 character limit reached

Hindsight Network Credit Assignment (2011.12351v1)

Published 24 Nov 2020 in cs.LG and cs.AI

Abstract: We present Hindsight Network Credit Assignment (HNCA), a novel learning method for stochastic neural networks, which works by assigning credit to each neuron's stochastic output based on how it influences the output of its immediate children in the network. We prove that HNCA provides unbiased gradient estimates while reducing variance compared to the REINFORCE estimator. We also experimentally demonstrate the advantage of HNCA over REINFORCE in a contextual bandit version of MNIST. The computational complexity of HNCA is similar to that of backpropagation. We believe that HNCA can help stimulate new ways of thinking about credit assignment in stochastic compute graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.