Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hindsight Network Credit Assignment (2011.12351v1)

Published 24 Nov 2020 in cs.LG and cs.AI

Abstract: We present Hindsight Network Credit Assignment (HNCA), a novel learning method for stochastic neural networks, which works by assigning credit to each neuron's stochastic output based on how it influences the output of its immediate children in the network. We prove that HNCA provides unbiased gradient estimates while reducing variance compared to the REINFORCE estimator. We also experimentally demonstrate the advantage of HNCA over REINFORCE in a contextual bandit version of MNIST. The computational complexity of HNCA is similar to that of backpropagation. We believe that HNCA can help stimulate new ways of thinking about credit assignment in stochastic compute graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)