Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning of Long-Horizon Sparse-Reward Robotic Manipulator Tasks with Base Controllers (2011.12105v3)

Published 24 Nov 2020 in cs.RO and cs.CV

Abstract: Deep Reinforcement Learning (DRL) enables robots to perform some intelligent tasks end-to-end. However, there are still many challenges for long-horizon sparse-reward robotic manipulator tasks. On the one hand, a sparse-reward setting causes exploration inefficient. On the other hand, exploration using physical robots is of high cost and unsafe. In this paper, we propose a method of learning long-horizon sparse-reward tasks utilizing one or more existing traditional controllers named base controllers in this paper. Built upon Deep Deterministic Policy Gradients (DDPG), our algorithm incorporates the existing base controllers into stages of exploration, value learning, and policy update. Furthermore, we present a straightforward way of synthesizing different base controllers to integrate their strengths. Through experiments ranging from stacking blocks to cups, it is demonstrated that the learned state-based or image-based policies steadily outperform base controllers. Compared to previous works of learning from demonstrations, our method improves sample efficiency by orders of magnitude and improves the performance. Overall, our method bears the potential of leveraging existing industrial robot manipulation systems to build more flexible and intelligent controllers.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.