Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latent Group Structured Multi-task Learning (2011.11904v1)

Published 24 Nov 2020 in cs.LG

Abstract: In multi-task learning (MTL), we improve the performance of key machine learning algorithms by training various tasks jointly. When the number of tasks is large, modeling task structure can further refine the task relationship model. For example, often tasks can be grouped based on metadata, or via simple preprocessing steps like K-means. In this paper, we present our group structured latent-space multi-task learning model, which encourages group structured tasks defined by prior information. We use an alternating minimization method to learn the model parameters. Experiments are conducted on both synthetic and real-world datasets, showing competitive performance over single-task learning (where each group is trained separately) and other MTL baselines.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.