Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SMG: A Shuffling Gradient-Based Method with Momentum (2011.11884v3)

Published 24 Nov 2020 in math.OC, cs.LG, and stat.ML

Abstract: We combine two advanced ideas widely used in optimization for machine learning: shuffling strategy and momentum technique to develop a novel shuffling gradient-based method with momentum, coined Shuffling Momentum Gradient (SMG), for non-convex finite-sum optimization problems. While our method is inspired by momentum techniques, its update is fundamentally different from existing momentum-based methods. We establish state-of-the-art convergence rates of SMG for any shuffling strategy using either constant or diminishing learning rate under standard assumptions (i.e.$L$-smoothness and bounded variance). When the shuffling strategy is fixed, we develop another new algorithm that is similar to existing momentum methods, and prove the same convergence rates for this algorithm under the $L$-smoothness and bounded gradient assumptions. We demonstrate our algorithms via numerical simulations on standard datasets and compare them with existing shuffling methods. Our tests have shown encouraging performance of the new algorithms.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.