Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DeepClimGAN: A High-Resolution Climate Data Generator (2011.11705v1)

Published 23 Nov 2020 in cs.NE

Abstract: Earth system models (ESMs), which simulate the physics and chemistry of the global atmosphere, land, and ocean, are often used to generate future projections of climate change scenarios. These models are far too computationally intensive to run repeatedly, but limited sets of runs are insufficient for some important applications, like adequately sampling distribution tails to characterize extreme events. As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM. Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator. In doing so, we gain the ability to produce daily weather data that is consistent with what ESM might output over any chosen scenario. In particular, the GAN is aimed at representing a joint probability distribution over space, time, and climate variables, enabling the study of correlated extreme events, such as floods, droughts, or heatwaves.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.