Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the application of Physically-Guided Neural Networks with Internal Variables to Continuum Problems (2011.11376v1)

Published 23 Nov 2020 in cs.LG and cs.AI

Abstract: Predictive Physics has been historically based upon the development of mathematical models that describe the evolution of a system under certain external stimuli and constraints. The structure of such mathematical models relies on a set of hysical hypotheses that are assumed to be fulfilled by the system within a certain range of environmental conditions. A new perspective is now raising that uses physical knowledge to inform the data prediction capability of artificial neural networks. A particular extension of this data-driven approach is Physically-Guided Neural Networks with Internal Variables (PGNNIV): universal physical laws are used as constraints in the neural network, in such a way that some neuron values can be interpreted as internal state variables of the system. This endows the network with unraveling capacity, as well as better predictive properties such as faster convergence, fewer data needs and additional noise filtering. Besides, only observable data are used to train the network, and the internal state equations may be extracted as a result of the training processes, so there is no need to make explicit the particular structure of the internal state model. We extend this new methodology to continuum physical problems, showing again its predictive and explanatory capacities when only using measurable values in the training set. We show that the mathematical operators developed for image analysis in deep learning approaches can be used and extended to consider standard functional operators in continuum Physics, thus establishing a common framework for both. The methodology presented demonstrates its ability to discover the internal constitutive state equation for some problems, including heterogeneous and nonlinear features, while maintaining its predictive ability for the whole dataset coverage, with the cost of a single evaluation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.