Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Causality Graph of Vehicular Traffic Flow (2011.11323v1)

Published 23 Nov 2020 in eess.SY, cs.SY, and eess.SP

Abstract: In an intelligent transportation system, the effects and relations of traffic flow at different points in a network are valuable features which can be exploited for control system design and traffic forecasting. In this paper, we define the notion of causality based on the directed information, a well-established data-driven measure, to represent the effective connectivity among nodes of a vehicular traffic network. This notion indicates whether the traffic flow at any given point affects another point's flow in the future and, more importantly, reveals the extent of this effect. In contrast with conventional methods to express connections in a network, it is not limited to linear models and normality conditions. In this work, directed information is used to determine the underlying graph structure of a network, denoted directed information graph, which expresses the causal relations among nodes in the network. We devise an algorithm to estimate the extent of the effects in each link and build the graph. The performance of the algorithm is then analyzed with synthetic data and real aggregated data of vehicular traffic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.