Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Hidden Markov Models from Aggregate Observations (2011.11236v2)

Published 23 Nov 2020 in cs.LG, cs.SY, eess.IV, and eess.SY

Abstract: In this paper, we propose an algorithm for estimating the parameters of a time-homogeneous hidden Markov model from aggregate observations. This problem arises when only the population level counts of the number of individuals at each time step are available, from which one seeks to learn the individual hidden Markov model. Our algorithm is built upon expectation-maximization and the recently proposed aggregate inference algorithm, the Sinkhorn belief propagation. As compared with existing methods such as expectation-maximization with non-linear belief propagation, our algorithm exhibits convergence guarantees. Moreover, our learning framework naturally reduces to the standard Baum-Welch learning algorithm when observations corresponding to a single individual are recorded. We further extend our learning algorithm to handle HMMs with continuous observations. The efficacy of our algorithm is demonstrated on a variety of datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.