Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Confidence Bounds for the Linear Logistic Model and Applications to Linear Bandits (2011.11222v2)

Published 23 Nov 2020 in stat.ML and cs.LG

Abstract: We propose improved fixed-design confidence bounds for the linear logistic model. Our bounds significantly improve upon the state-of-the-art bound by Li et al. (2017) via recent developments of the self-concordant analysis of the logistic loss (Faury et al., 2020). Specifically, our confidence bound avoids a direct dependence on $1/\kappa$, where $\kappa$ is the minimal variance over all arms' reward distributions. In general, $1/\kappa$ scales exponentially with the norm of the unknown linear parameter $\theta*$. Instead of relying on this worst-case quantity, our confidence bound for the reward of any given arm depends directly on the variance of that arm's reward distribution. We present two applications of our novel bounds to pure exploration and regret minimization logistic bandits improving upon state-of-the-art performance guarantees. For pure exploration, we also provide a lower bound highlighting a dependence on $1/\kappa$ for a family of instances.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.