Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Effectiveness of MPC-friendly Softmax Replacement (2011.11202v2)

Published 23 Nov 2020 in cs.LG and cs.CR

Abstract: Softmax is widely used in deep learning to map some representation to a probability distribution. As it is based on exp/log functions that are relatively expensive in multi-party computation, Mohassel and Zhang (2017) proposed a simpler replacement based on ReLU to be used in secure computation. However, we could not reproduce the accuracy they reported for training on MNIST with three fully connected layers. Later works (e.g., Wagh et al., 2019 and 2021) used the softmax replacement not for computing the output probability distribution but for approximating the gradient in back-propagation. In this work, we analyze the two uses of the replacement and compare them to softmax, both in terms of accuracy and cost in multi-party computation. We found that the replacement only provides a significant speed-up for a one-layer network while it always reduces accuracy, sometimes significantly. Thus we conclude that its usefulness is limited and one should use the original softmax function instead.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)