Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On cutting blocking sets and their codes (2011.11101v1)

Published 22 Nov 2020 in math.CO, cs.IT, and math.IT

Abstract: Let PG$(r, q)$ be the $r$-dimensional projective space over the finite field ${\rm GF}(q)$. A set $\cal X$ of points of PG$(r, q)$ is a cutting blocking set if for each hyperplane $\Pi$ of PG$(r, q)$ the set $\Pi \cap \cal X$ spans $\Pi$. Cutting blocking sets give rise to saturating sets and minimal linear codes and those having size as small as possible are of particular interest. We observe that from a cutting blocking set obtained by Fancsali and Sziklai, by using a set of pairwise disjoint lines, there arises a minimal linear code whose length grows linearly with respect to its dimension. We also provide two distinct constructions: a cutting blocking set of PG$(3, q3)$ of size $3(q+1)(q2+1)$ as a union of three pairwise disjoint $q$-order subgeometries and a cutting blocking set of PG$(5, q)$ of size $7(q+1)$ from seven lines of a Desarguesian line spread of PG$(5, q)$. In both cases the cutting blocking sets obtained are smaller than the known ones. As a byproduct we further improve on the upper bound of the smallest size of certain saturating sets and on the minimum length of a minimal $q$-ary linear code having dimension $4$ and $6$.

Citations (15)

Summary

We haven't generated a summary for this paper yet.