Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RNNP: A Robust Few-Shot Learning Approach (2011.11067v1)

Published 22 Nov 2020 in cs.CV

Abstract: Learning from a few examples is an important practical aspect of training classifiers. Various works have examined this aspect quite well. However, all existing approaches assume that the few examples provided are always correctly labeled. This is a strong assumption, especially if one considers the current techniques for labeling using crowd-based labeling services. We address this issue by proposing a novel robust few-shot learning approach. Our method relies on generating robust prototypes from a set of few examples. Specifically, our method refines the class prototypes by producing hybrid features from the support examples of each class. The refined prototypes help to classify the query images better. Our method can replace the evaluation phase of any few-shot learning method that uses a nearest neighbor prototype-based evaluation procedure to make them robust. We evaluate our method on standard mini-ImageNet and tiered-ImageNet datasets. We perform experiments with various label corruption rates in the support examples of the few-shot classes. We obtain significant improvement over widely used few-shot learning methods that suffer significant performance degeneration in the presence of label noise. We finally provide extensive ablation experiments to validate our method.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.