Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Harmonic Algorithms for Packing d-dimensional Cuboids Into Bins (2011.10963v4)

Published 22 Nov 2020 in cs.CG and cs.DS

Abstract: We explore approximation algorithms for the $d$-dimensional geometric bin packing problem ($d$BP). Caprara (MOR 2008) gave a harmonic-based algorithm for $d$BP having an asymptotic approximation ratio (AAR) of $T_{\infty}{d-1}$ (where $T_{\infty} \approx 1.691$). However, their algorithm doesn't allow items to be rotated. This is in contrast to some common applications of $d$BP, like packing boxes into shipping containers. We give approximation algorithms for $d$BP when items can be orthogonally rotated about all or a subset of axes. We first give a fast and simple harmonic-based algorithm having AAR $T_{\infty}{d}$. We next give a more sophisticated harmonic-based algorithm, which we call $\mathtt{HGaP}k$, having AAR $T{\infty}{d-1}(1+\epsilon)$. This gives an AAR of roughly $2.860 + \epsilon$ for 3BP with rotations, which improves upon the best-known AAR of $4.5$. In addition, we study the multiple-choice bin packing problem that generalizes the rotational case. Here we are given $n$ sets of $d$-dimensional cuboidal items and we have to choose exactly one item from each set and then pack the chosen items. Our algorithms also work for the multiple-choice bin packing problem. We also give fast and simple approximation algorithms for the multiple-choice versions of $d$D strip packing and $d$D geometric knapsack.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)