Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes (2011.10946v1)

Published 22 Nov 2020 in math.AP, cs.NA, and math.NA

Abstract: In this article we prove convergence of the Godunov scheme of [16] for a scalar conservation law in one space dimension with a spatially discontinuous flux. There may be infinitely many flux discontinuities, and the set of discontinuities may have accumulation points. Thus the existence of traces cannot be assumed. In contrast to the study appearing in [16], we do not restrict the flux to be unimodal. We allow for the case where the flux has degeneracies, i.e., the flux may vanish on some interval of state space. Since the flux is allowed to be degenerate, the corresponding singular map may not be invertible, and thus the convergence proof appearing in [16] does not pertain. We prove that the Godunov approximations nevertheless do converge in the presence of flux degeneracy, using an alternative method of proof. We additionally consider the case where the flux has the form described in [21]. For this case we prove convergence via yet another method. This method of proof provides a spatial variation bound on the solutions, which is of independent interest. We present numerical examples that illustrate the theory.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube