Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large-Scale Multi-Agent Deep FBSDEs (2011.10890v3)

Published 21 Nov 2020 in cs.AI

Abstract: In this paper we present a scalable deep learning framework for finding Markovian Nash Equilibria in multi-agent stochastic games using fictitious play. The motivation is inspired by theoretical analysis of Forward Backward Stochastic Differential Equations (FBSDE) and their implementation in a deep learning setting, which is the source of our algorithm's sample efficiency improvement. By taking advantage of the permutation-invariant property of agents in symmetric games, the scalability and performance is further enhanced significantly. We showcase superior performance of our framework over the state-of-the-art deep fictitious play algorithm on an inter-bank lending/borrowing problem in terms of multiple metrics. More importantly, our approach scales up to 3000 agents in simulation, a scale which, to the best of our knowledge, represents a new state-of-the-art. We also demonstrate the applicability of our framework in robotics on a belief space autonomous racing problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.