Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A System for Automatic Rice Disease Detection from Rice Paddy Images Serviced via a Chatbot (2011.10823v2)

Published 21 Nov 2020 in eess.SY, cs.CV, and cs.SY

Abstract: A LINE Bot System to diagnose rice diseases from actual paddy field images was developed and presented in this paper. It was easy-to-use and automatic system designed to help rice farmers improve the rice yield and quality. The targeted images were taken from the actual paddy environment without special sample preparation. We used a deep learning neural networks technique to detect rice diseases from the images. We developed an object detection model training and refinement process to improve the performance of our previous research on rice leave diseases detection. The process was based on analyzing the model's predictive results and could be repeatedly used to improve the quality of the database in the next training of the model. The deployment model for our LINE Bot system was created from the selected best performance technique in our previous paper, YOLOv3, trained by refined training data set. The performance of the deployment model was measured on 5 target classes and found that the Average True Positive Point improved from 91.1% in the previous paper to 95.6% in this study. Therefore, we used this deployment model for Rice Disease LINE Bot system. Our system worked automatically real-time to suggest primary diagnosis results to the users in the LINE group, which included rice farmers and rice disease specialists. They could communicate freely via chat. In the real LINE Bot deployment, the model's performance was measured by our own defined measurement Average True Positive Point and was found to be an average of 78.86%. The system was fast and took only 2-3 s for detection process in our system server.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.