Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving RNN-T ASR Accuracy Using Context Audio (2011.10538v3)

Published 20 Nov 2020 in eess.AS and cs.SD

Abstract: We present a training scheme for streaming automatic speech recognition (ASR) based on recurrent neural network transducers (RNN-T) which allows the encoder network to learn to exploit context audio from a stream, using segmented or partially labeled sequences of the stream during training. We show that the use of context audio during training and inference can lead to word error rate reductions of more than 6% in a realistic production setting for a voice assistant ASR system. We investigate the effect of the proposed training approach on acoustically challenging data containing background speech and present data points which indicate that this approach helps the network learn both speaker and environment adaptation. To gain further insight into the ability of a long short-term memory (LSTM) based ASR encoder to exploit long-term context, we also visualize RNN-T loss gradients with respect to the input.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.