Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hop-Constrained Oblivious Routing (2011.10446v2)

Published 20 Nov 2020 in cs.DS

Abstract: We prove the existence of an oblivious routing scheme that is $\mathrm{poly}(\log n)$-competitive in terms of $(congestion + dilation)$, thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize $(congestion + dilation)$, defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have $(congestion + dilation)$ within a $\mathrm{poly}(\log n)$ factor of the best possible value. More precisely, for any integer hop-bound $h$, this oblivious routing scheme selects paths of length at most $h \cdot \mathrm{poly}(\log n)$ and is $\mathrm{poly}(\log n)$-competitive in terms of $congestion$ in comparison to the best possible $congestion$ achievable via paths of length at most $h$ hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R\"{a}cke [FOCS 2002, STOC 2008], which are $O(\log n)$-competitive in terms of $congestion$, but are not competitive in terms of $dilation$.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.