Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Cascade Attentive Dropout for Weakly Supervised Object Detection (2011.10258v1)

Published 20 Nov 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Weakly supervised object detection (WSOD) aims to classify and locate objects with only image-level supervision. Many WSOD approaches adopt multiple instance learning as the initial model, which is prone to converge to the most discriminative object regions while ignoring the whole object, and therefore reduce the model detection performance. In this paper, a novel cascade attentive dropout strategy is proposed to alleviate the part domination problem, together with an improved global context module. We purposely discard attentive elements in both channel and space dimensions, and capture the inter-pixel and inter-channel dependencies to induce the model to better understand the global context. Extensive experiments have been conducted on the challenging PASCAL VOC 2007 benchmarks, which achieve 49.8% mAP and 66.0% CorLoc, outperforming state-of-the-arts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube