Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Provable Multi-Objective Reinforcement Learning with Generative Models (2011.10134v2)

Published 19 Nov 2020 in cs.LG, cs.AI, and math.OC

Abstract: Multi-objective reinforcement learning (MORL) is an extension of ordinary, single-objective reinforcement learning (RL) that is applicable to many real-world tasks where multiple objectives exist without known relative costs. We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives. Existing methods require strong assumptions such as exact knowledge of the multi-objective Markov decision process, and are analyzed in the limit of infinite data and time. We propose a new algorithm called model-based envelop value iteration (EVI), which generalizes the enveloped multi-objective $Q$-learning algorithm in Yang et al., 2019. Our method can learn a near-optimal value function with polynomial sample complexity and linear convergence speed. To the best of our knowledge, this is the first finite-sample analysis of MORL algorithms.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.