Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Error Exponents in the Bee Identification Problem (2011.09799v1)

Published 19 Nov 2020 in cs.IT and math.IT

Abstract: We derive various error exponents in the bee identification problem under two different decoding rules. Under na\"ive decoding, which decodes each bee independently of the others, we analyze a general discrete memoryless channel and a relatively wide family of stochastic decoders. Upper and lower bounds to the random coding error exponent are derived and proved to be equal at relatively high coding rates. Then, we propose a lower bound on the error exponent of the typical random code, which improves upon the random coding exponent at low coding rates. We also derive a third bound, which is related to expurgated codes, which turns out to be strictly higher than the other bounds, also at relatively low rates. We show that the universal maximum mutual information decoder is optimal with respect to the typical random code and the expurgated code. Moving further, we derive error exponents under optimal decoding, the relatively wide family of symmetric channels, and the maximum likelihood decoder. We first propose a random coding lower bound, and then, an improved bound which stems from an expurgation process. We show numerically that our second bound strictly improves upon the random coding bound at an intermediate range of coding rates, where a bound derived in a previous work no longer holds.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)