Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Res-GCNN: A Lightweight Residual Graph Convolutional Neural Networks for Human Trajectory Forecasting (2011.09214v1)

Published 18 Nov 2020 in cs.CV

Abstract: Autonomous driving vehicles (ADVs) hold great hopes to solve traffic congestion problems and reduce the number of traffic accidents. Accurate trajectories prediction of other traffic agents around ADVs is of key importance to achieve safe and efficient driving. Pedestrians, particularly, are more challenging to forecast due to their complex social in-teractions and randomly moving patterns. We propose a Residual Graph Convolutional Neural Network (Res-GCNN), which models the interactive behaviors of pedes-trians by using the adjacent matrix of the constructed graph for the current scene. Though the proposed Res-GCNN is quite lightweight with only about 6.4 kilo parameters which outperforms all other methods in terms of parameters size, our experimental results show an improvement over the state of art by 13.3% on the Final Displacement Error (FDE) which reaches 0.65 meter. As for the Average Dis-placement Error (ADE), we achieve a suboptimal result (the value is 0.37 meter), which is also very competitive. The Res-GCNN is evaluated in the platform with an NVIDIA GeForce RTX1080Ti GPU, and its mean inference time of the whole dataset is only about 2.2 microseconds. Compared with other methods, the proposed method shows strong potential for onboard application accounting for forecasting accuracy and time efficiency. The code will be made publicly available on GitHub.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)