Papers
Topics
Authors
Recent
2000 character limit reached

Contrastive Weight Regularization for Large Minibatch SGD (2011.08968v1)

Published 17 Nov 2020 in cs.LG and stat.ML

Abstract: The minibatch stochastic gradient descent method (SGD) is widely applied in deep learning due to its efficiency and scalability that enable training deep networks with a large volume of data. Particularly in the distributed setting, SGD is usually applied with large batch size. However, as opposed to small-batch SGD, neural network models trained with large-batch SGD can hardly generalize well, i.e., the validation accuracy is low. In this work, we introduce a novel regularization technique, namely distinctive regularization (DReg), which replicates a certain layer of the deep network and encourages the parameters of both layers to be diverse. The DReg technique introduces very little computation overhead. Moreover, we empirically show that optimizing the neural network with DReg using large-batch SGD achieves a significant boost in the convergence and improved generalization performance. We also demonstrate that DReg can boost the convergence of large-batch SGD with momentum. We believe that DReg can be used as a simple regularization trick to accelerate large-batch training in deep learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.