Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A convergent structure-preserving finite-volume scheme for the Shigesada-Kawasaki-Teramoto population system (2011.08731v1)

Published 17 Nov 2020 in math.NA and cs.NA

Abstract: An implicit Euler finite-volume scheme for an $n$-species population cross-diffusion system of Shigesada--Kawasaki--Teramoto-type in a bounded domain with no-flux boundary conditions is proposed and analyzed. The scheme preserves the formal gradient-flow or entropy structure and preserves the nonnegativity of the population densities. The key idea is to consider a suitable mean of the mobilities in such a way that a discrete chain rule is fulfilled and a discrete analog of the entropy inequality holds. The existence of finite-volume solutions, the convergence of the scheme, and the large-time asymptotics to the constant steady state are proven. Furthermore, numerical experiments in one and two space dimensiona for two and three species are presented. The results are valid for a more general class of cross-diffusion systems satisfying some structural conditions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.