Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cascade RNN-Transducer: Syllable Based Streaming On-device Mandarin Speech Recognition with a Syllable-to-Character Converter (2011.08469v1)

Published 17 Nov 2020 in cs.SD, cs.CL, and eess.AS

Abstract: End-to-end models are favored in automatic speech recognition (ASR) because of its simplified system structure and superior performance. Among these models, recurrent neural network transducer (RNN-T) has achieved significant progress in streaming on-device speech recognition because of its high-accuracy and low-latency. RNN-T adopts a prediction network to enhance language information, but its LLMing ability is limited because it still needs paired speech-text data to train. Further strengthening the LLMing ability through extra text data, such as shallow fusion with an external LLM, only brings a small performance gain. In view of the fact that Mandarin Chinese is a character-based language and each character is pronounced as a tonal syllable, this paper proposes a novel cascade RNN-T approach to improve the LLMing ability of RNN-T. Our approach firstly uses an RNN-T to transform acoustic feature into syllable sequence, and then converts the syllable sequence into character sequence through an RNN-T-based syllable-to-character converter. Thus a rich text repository can be easily used to strengthen the LLM ability. By introducing several important tricks, the cascade RNN-T approach surpasses the character-based RNN-T by a large margin on several Mandarin test sets, with much higher recognition quality and similar latency.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube