Papers
Topics
Authors
Recent
2000 character limit reached

Do not trust the neighbors! Adversarial Metric Learning for Self-Supervised Scene Flow Estimation (2011.07945v1)

Published 1 Nov 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Scene flow is the task of estimating 3D motion vectors to individual points of a dynamic 3D scene. Motion vectors have shown to be beneficial for downstream tasks such as action classification and collision avoidance. However, data collected via LiDAR sensors and stereo cameras are computation and labor intensive to precisely annotate for scene flow. We address this annotation bottleneck on two ends. We propose a 3D scene flow benchmark and a novel self-supervised setup for training flow models. The benchmark consists of datasets designed to study individual aspects of flow estimation in progressive order of complexity, from a single object in motion to real-world scenes. Furthermore, we introduce Adversarial Metric Learning for self-supervised flow estimation. The flow model is fed with sequences of point clouds to perform flow estimation. A second model learns a latent metric to distinguish between the points translated by the flow estimations and the target point cloud. This latent metric is learned via a Multi-Scale Triplet loss, which uses intermediary feature vectors for the loss calculation. We use our proposed benchmark to draw insights about the performance of the baselines and of different models when trained using our setup. We find that our setup is able to keep motion coherence and preserve local geometries, which many self-supervised baselines fail to grasp. Dealing with occlusions, on the other hand, is still an open challenge.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.