Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Secretary Problem with Independent Sampling (2011.07869v1)

Published 16 Nov 2020 in cs.GT and cs.DS

Abstract: In the secretary problem we are faced with an online sequence of elements with values. Upon seeing an element we have to make an irrevocable take-it-or-leave-it decision. The goal is to maximize the probability of picking the element of maximum value. The most classic version of the problem is that in which the elements arrive in random order and their values are arbitrary. However, by varying the available information, new interesting problems arise. Also the case in which the arrival order is adversarial instead of random leads to interesting variants that have been considered in the literature. In this paper we study both the random order and adversarial order secretary problems with an additional twist. The values are arbitrary, but before starting the online sequence we independently sample each element with a fixed probability $p$. The sampled elements become our information or history set and the game is played over the remaining elements. We call these problems the random order secretary problem with $p$-sampling (ROS$p$ for short) and the adversarial order secretary problem with $p$-sampling (AOS$p$ for short). Our main result is to obtain best possible algorithms for both problems and all values of $p$. As $p$ grows to 1 the obtained guarantees converge to the optimal guarantees in the full information case. In the adversarial order setting, the best possible algorithm turns out to be a simple fixed threshold algorithm in which the optimal threshold is a function of $p$ only. In the random order setting we prove that the best possible algorithm is characterized by a fixed sequence of time thresholds, dictating at which point in time we should start accepting a value that is both a maximum of the online sequence and has a given ranking within the sampled elements.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.