Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data-driven stabilization of nonlinear polynomial systems with noisy data (2011.07833v1)

Published 16 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: In a paper we have shown how to learn controllers for unknown linear systems using finite-sized noisy data by solving linear matrix inequalities. In this note we extend this approach to deal with unknown nonlinear polynomial systems by formulating stability certificates in the form of data-dependent sum of squares programs, whose solution directly provides a stabilizing controller and a Lyapunov function. We then derive variations of this result that lead to more advantageous controller designs. The results also reveal connections to the problem of designing a controller starting from a least-square estimate of the polynomial system.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube