Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Forking Without Clicking: on How to Identify Software Repository Forks (2011.07821v1)

Published 16 Nov 2020 in cs.SE

Abstract: The notion of software ''fork'' has been shifting over time from the (negative) phenomenon of community disagreements that result in the creation of separate development lines and ultimately software products, to the (positive) practice of using distributed version control system (VCS) repositories to collaboratively improve a single product without stepping on each others toes. In both cases the VCS repositories participating in a fork share parts of a common development history. Studies of software forks generally rely on hosting platform metadata, such as GitHub, as the source of truth for what constitutes a fork. These ''forge forks'' however can only identify as forks repositories that have been created on the platform, e.g., by clicking a ''fork'' button on the platform user interface. The increased diversity in code hosting platforms (e.g., GitLab) and the habits of significant development communities (e.g., the Linux kernel, which is not primarily hosted on any single platform) call into question the reliability of trusting code hosting platforms to identify forks. Doing so might introduce selection and methodological biases in empirical studies. In this article we explore various definitions of ''software forks'', trying to capture forking workflows that exist in the real world. We quantify the differences in how many repositories would be identified as forks on GitHub according to the various definitions, confirming that a significant number could be overlooked by only considering forge forks. We study the structure and size of fork networks , observing how they are affected by the proposed definitions and discuss the potential impact on empirical research.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.