Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Bandits: Probabilistic Communication on $d$-regular Graphs (2011.07720v2)

Published 16 Nov 2020 in stat.ML, cs.LG, and math.PR

Abstract: We study the decentralized multi-agent multi-armed bandit problem for agents that communicate with probability over a network defined by a $d$-regular graph. Every edge in the graph has probabilistic weight $p$ to account for the ($1!-!p$) probability of a communication link failure. At each time step, each agent chooses an arm and receives a numerical reward associated with the chosen arm. After each choice, each agent observes the last obtained reward of each of its neighbors with probability $p$. We propose a new Upper Confidence Bound (UCB) based algorithm and analyze how agent-based strategies contribute to minimizing group regret in this probabilistic communication setting. We provide theoretical guarantees that our algorithm outperforms state-of-the-art algorithms. We illustrate our results and validate the theoretical claims using numerical simulations.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.