Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ensemble of Models Trained by Key-based Transformed Images for Adversarially Robust Defense Against Black-box Attacks (2011.07697v1)

Published 16 Nov 2020 in cs.CV

Abstract: We propose a voting ensemble of models trained by using block-wise transformed images with secret keys for an adversarially robust defense. Key-based adversarial defenses were demonstrated to outperform state-of-the-art defenses against gradient-based (white-box) attacks. However, the key-based defenses are not effective enough against gradient-free (black-box) attacks without requiring any secret keys. Accordingly, we aim to enhance robustness against black-box attacks by using a voting ensemble of models. In the proposed ensemble, a number of models are trained by using images transformed with different keys and block sizes, and then a voting ensemble is applied to the models. In image classification experiments, the proposed defense is demonstrated to defend state-of-the-art attacks. The proposed defense achieves a clean accuracy of 95.56 % and an attack success rate of less than 9 % under attacks with a noise distance of 8/255 on the CIFAR-10 dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.